John E Mullinax, MD, FACS
Assistant Member, Sarcoma Department
Surgical Director, Cellular Therapy Program
Moffitt Cancer Center

November 16, 2022

Investigator-Initiated Trial Infrastructure

- <u>Task:</u> Phase 1 AYA Sarcoma TIL Trial
- Goal: Establish safety/feasibility & toxicity profile

Long Term Success

- <u>Task:</u> Deliver highly active T-cell product to patients
- Goal: Demonstrate
 efficacy as second line
 therapy using
 cryopreserved product
 generated at diagnosis

Preclinical Development

- <u>Task:</u> Expansion and Characterization of TIL
- Goal: Manufacturing strategy for efficient expansion of TIL

Basic Science Research

- <u>Task:</u> Understand tumor and TIL factors that result in tumor-specific reactivity of infusion product
- Goal: Tumor genomic-based patient selection and develop modification strategy to enhance TIL

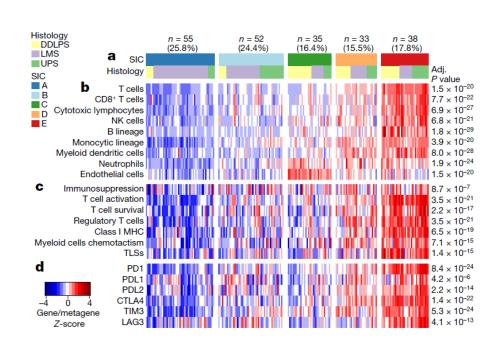
Investigator-Initiated Trial Infrastructure

- <u>Task:</u> Phase 1 AYA Sarcoma TIL
 Trial
- Goal: Establish safety/feasibility & toxicity profile

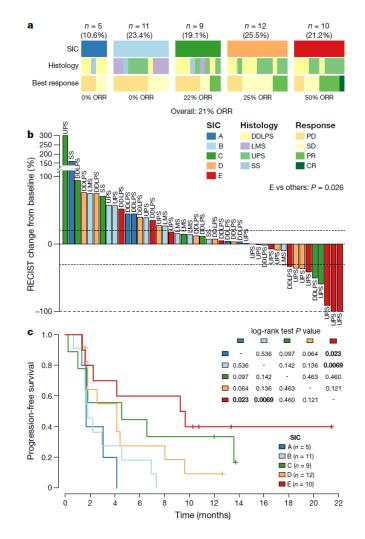
Long Term Success

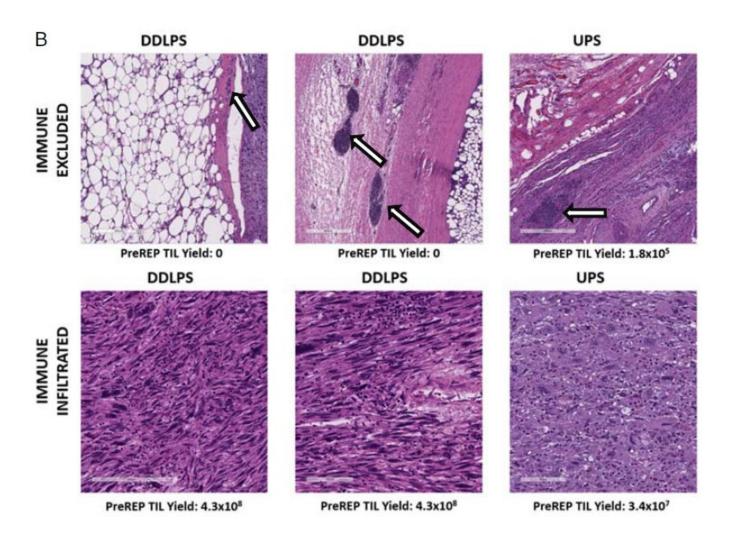
- <u>Task:</u> Deliver highly active T-cell product to patients
- Goal: Demonstrate
 efficacy as second line
 therapy using
 cryopreserved product
 generated at diagnosis

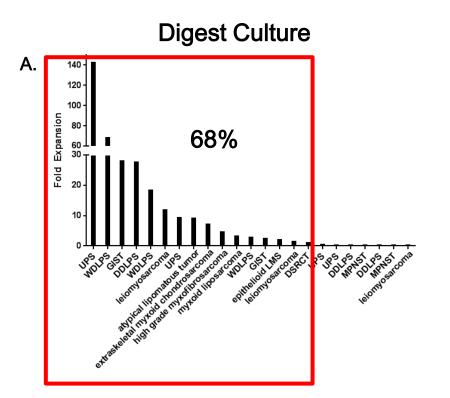
Preclinical Development

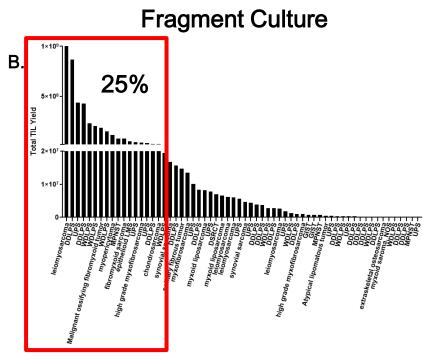

- <u>Task:</u> Expansion and Characterization of TIL
- Goal: Manufacturing strategy for efficient expansion of TIL

Basic Science Research


- <u>Task:</u> Understand tumor and TIL factors that result in tumor-specific reactivity of infusion product
- Goal: Tumor genomic-based patient selection and develop modification strategy to enhance TIL


Gene Expression Data Categorize Immune Phenotype and Predict Outcome in Sarcoma


- Four publicly available datasets:
 - TCGA SARC, Gene Expression Omnibus accessions GSE21050, GSE21122 and GSE30929
- Microenvironment Cell Populations-counter (MCP-counter) method
 - Becht, Genome Biology, 2016
- 608 tumors analyzed to create 5 unique Sarcoma Immune Classes (SIC)



Lymphocyte infiltration pattern predicts TIL expansion from fresh tumor

TIL Culture From Fresh Tumor Digest Increases Likelihood of Successful Expansion

Preclinical Manufacturing Data Summary

Key Results:

- TIL can be expanded from primary sarcoma specimens
- Cultured TIL REP to clinically relevant degree
- Digest method yields highest probability of generating TIL infusion product (Mullinax et. al., J Immunotherapy 2021)

Deliverable:

- Successful manufacturing approach offers opportunity to test the feasibility of ACT for STS
 - FDA IND # 18646
 - Patent # PCT/US22/24804, 10615-301WO1
 - Phase 1 clinical trial protocol

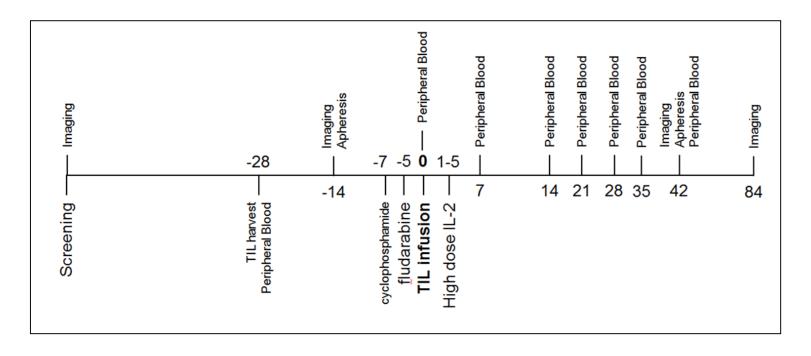
Investigator-Initiated Trial Infrastructure

- <u>Task:</u> Phase 1 AYA Sarcoma TIL Trial
- Goal: Establish safety/feasibility & toxicity profile

Long Term Success

- <u>Task:</u> Deliver highly active T-cell product to patients
- Goal: Demonstrate
 efficacy as second line
 therapy using
 cryopreserved product
 generated at diagnosis

Preclinical Development

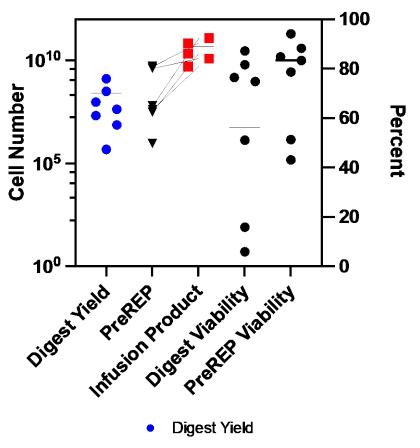

- <u>Task:</u> Expansion and Characterization of TIL
- Goal: Manufacturing strategy for efficient expansion of TIL

Basic Science Research

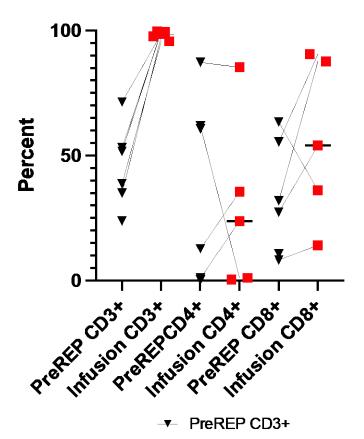
- <u>Task:</u> Understand tumor and TIL factors that result in tumor-specific reactivity of infusion product
- Goal: Tumor genomic-based patient selection and develop modification strategy to enhance TIL

MCC19837: "AYA Sarcoma TIL Trial"

- Metastatic STS, failure >1 line systemic therapy, age 18-40
- Treatment Plan:
 - New production process: preREP TIL product from tumor digest
 - REP unchanged
 - IL-2 post-TIL infusion: high dose schedule (600,000 IU/kg q8h) with standard hold and discontinue parameters utilized on Cell Therapy inpatient service

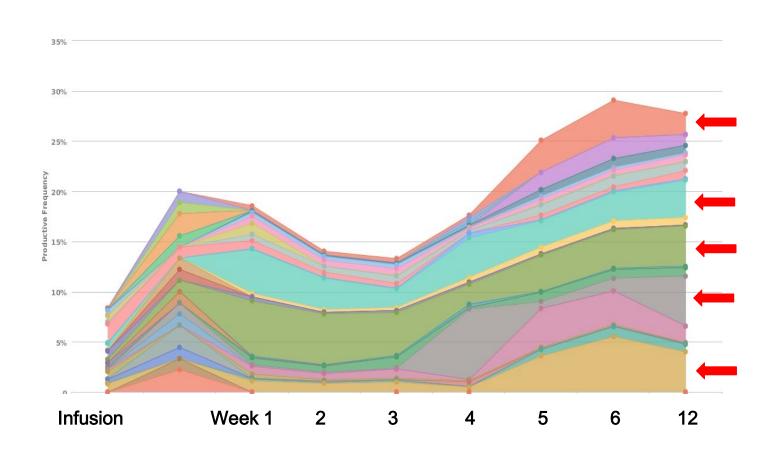

Enrollment Demographic Summary

Total enrollment	N=9	
Gender	7/9 (78%) male	
Age	27.4 (24-38.5)	
Prior lines of therapy	2 (1-5)	
Sarcoma subtype diagnosis	Myxoid liposarcoma (2) Clear cell sarcoma Synovial sarcoma Desmoplastic small round cell tumor Ewing sarcoma Leiomyosarcoma Extraskeletal mesenchymal chondrosarcoma Osteosarcoma	
SAE, treatment related	 3/5 (60%) 2 Cy/Flu: G3 DAH, G4 bone marrow hypoplasia 1 IL-2 related: G3 hypotension 	
Expansion success	5/7 (71%) • 2 screen fail (EMS, LMS) • 2 non-expansion (osteosarcoma, Ewing)	
Infusion product	2.16x10 ¹⁰ (5x10 ⁹ -6.87x10 ¹⁰)	
IL-2 doses received	4 (1-7)	


Primary Endpoints:

- Safety: No more than 3 patients with >G4 non hematologic AE
- Feasibility: Expansion of infusion product from 33% of patients

High quality infusion products were generated from resected metastatic sites



- **PreREP**
- Infusion Product
- Digest Viability
- **PreREP Viability**

- PreREPCD4+
- PreREP CD8+
- Infusion CD3+
- Infusion CD4+
- Infusion CD8+

Infused TIL persist and T-cell clones preferentially expand over time

Investigator-Initiated Trial Infrastructure

- <u>Task:</u> Phase 1 AYA Sarcoma TIL Trial
- Goal: Establish safety/feasibility & toxicity profile

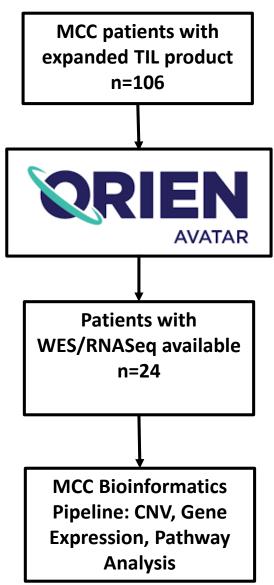
Long Term Success

- <u>Task:</u> Deliver highly active T-cell product to patients
- Goal: Demonstrate
 efficacy as second line
 therapy using
 cryopreserved product
 generated at diagnosis

Preclinical Development

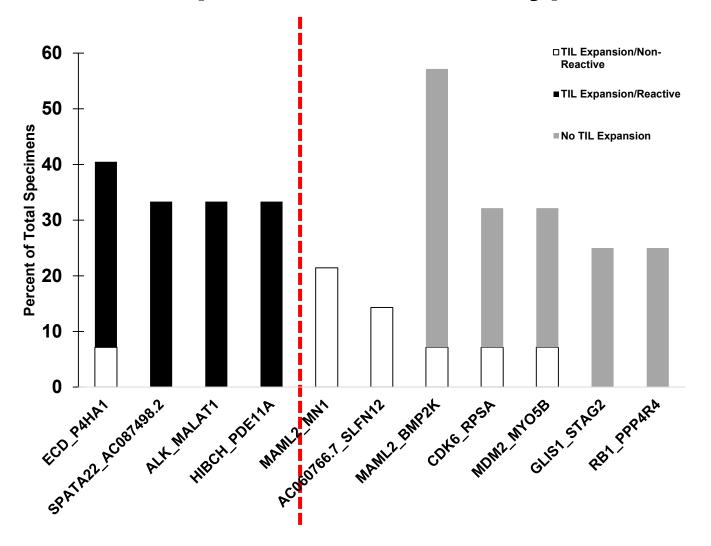
- <u>Task:</u> Expansion and Characterization of TIL
- Goal: Manufacturing strategy for efficient expansion of TIL

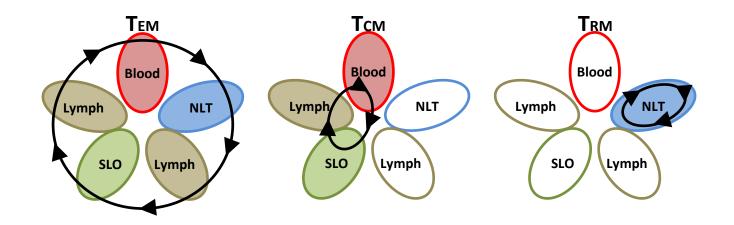
Basic Science Research

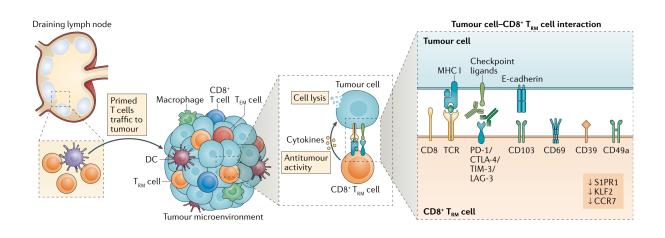

- <u>Task:</u> Understand tumor and TIL factors that result in tumor-specific reactivity of infusion product
- Goal: Tumor genomic-based patient selection and develop modification strategy to enhance TIL

How do we define success for autologous T-cell therapy in sarcoma?

- Optimal patient selection
 - Identify tumor factors that predict expansion of reactive
 TIL
 - WES analysis using AVATAR dataset
 - Decrease burden of disease
 - TIL harvest before SOC chemotherapy
 - Cryopreserve with infusion post-failure
 - Allows for modification while receiving treatment
 - Significantly decreased logistical burden
- Optimal T-cell product
 - Identify T-cell subsets with tumor-specific activity
 - Strategy to modify T-cell product during manufacturing to elicit optimal phenotype

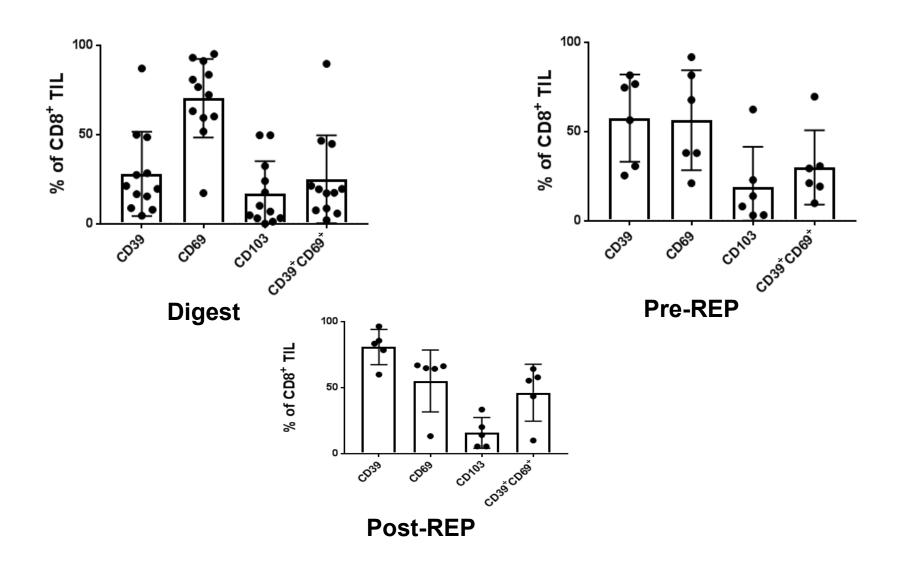

Leveraging Moffitt AVATAR Dataset for Preliminary Data



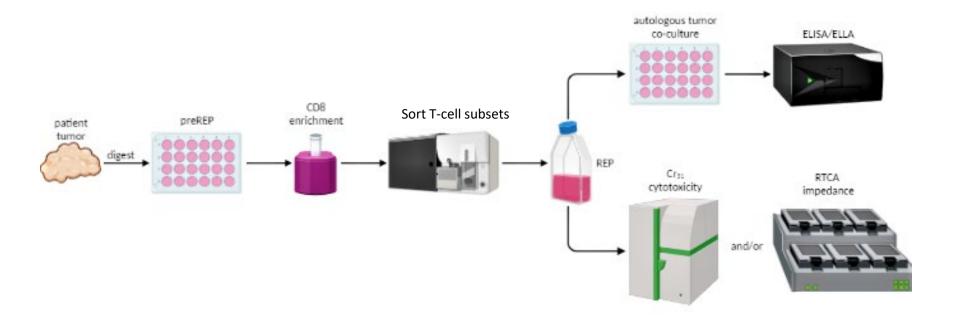


Unique Gene Fusions are Associated with Optimal ACT Phenotype

Expanded T-cells from Fresh Tumor Include Multiple Heterogeneous Subpopulations



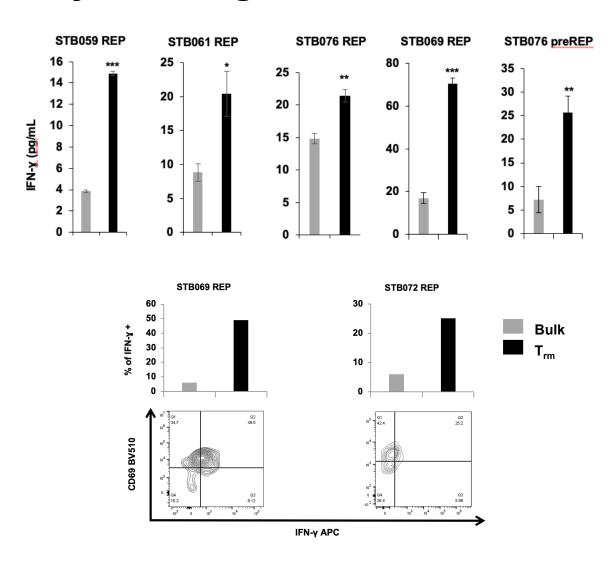
- Most literature focuses on carcinomas
- We hypothesize that optimal TIL phenotype will have a variance from the canonical markers shown in epithelial malignancies

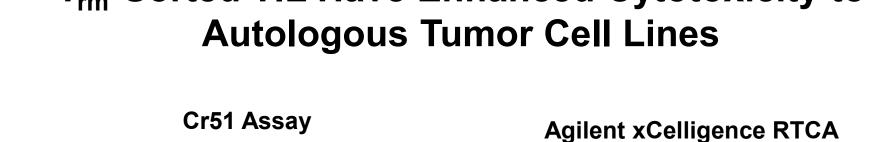

Multiple high impact publications describing function of T_{rm} in recent years

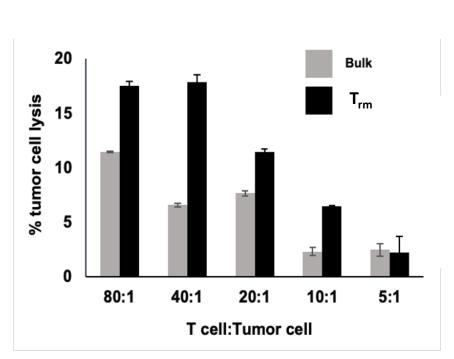
Author	Journal	Year	Phenotypic Marker	Key Conclusions
GanesanOttensmeier	Nat Immunology	2017	CD103+ CD69+CD49a	Associated with residency program and higher OS in NSCLC
DuhenWeinberg	Nature Communications	2018	CD39+CD103+	"Double positive" have higher anti- tumor activity and better OS in HNSCC
LoweryRosenberg	Science	2022	CD39-CD69-	"Double negative" TIL in infusion product associated with high CR rate
AnadonConejo- Garcia	Cancer Cell	2022	CD69+CD103+	Small percentage (3%) of TIL maintain "waves of effector TRM-like cells"
Crowl Goldrath	Nat Immunology	2022	CD69+CD103+	Differential expression across normal tissue lineage

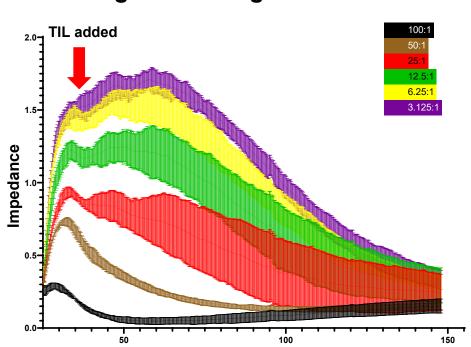
T-cell phenotype across phases of ACT in soft tissue sarcoma

Functional analysis of T_{rm} Derived from STS

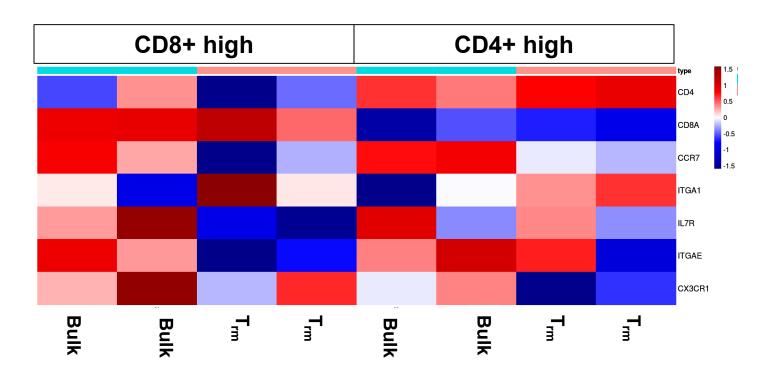





J. Hensel, A. Alfaro


T_{rm} Sorted TIL Have Enhanced Tumor-Specific Activity: Autologous tumor co-culture

T_{rm} Sorted TIL Have Enhanced Cytotoxicity to **Autologous Tumor Cell Lines**



Time (hrs)

RNASeq of Sorted T_{rm} populations reveals early signal of DEGs

Key preliminary findings:

- CD49a (ITGA1) high, supporting these cells are Trm-like
- CCR7 low, suggesting this population is these cell are not part of the central memory compartment
- CX3CR1 low (except for STB076), suggesting not Tem
- CD127 low (IL7R), which is more Temra-like (terminal effector memory T)

Next Step: ACT Modeling in humanized murine model

- 121 tumor samples acquired from lab (MCC18609)
 - · Cohort of samples with matched
 - postREP TIL
 - PBMC (to generate EBV transformed B-cells as APC)
 - Tumor cell line provides for RTCA, co-culture to document in vitro activity
 - PDX strain established
- Using a <u>humanized murine tumor model (NOG-hIL-2)</u> with matched human tumor-TIL we can effectively study the <u>specific function of T-cell subsets</u> <u>from expanded TIL</u>

Acknowledgements

- Shari Pilon-Thomas, Ph.D.
- Amod Sarnaik, M.D.
- James Mulé, Ph.D.
- Ricardo J. Gonzalez, M.D.
- Mullinax Lab
 - Madeline Rodriguez, Ph.D.
 - Alex Alfaro
 - Jonathan Hensel, Ph.D. (past)
 - Tanja Svrdlin (past)
 - Zach Sannasardo (past)
 - Julie Le (past)
- Pilon-Thomas Lab
 - Matt Beatty, Ph.D.
 - Maclean Hall
 - Amy Hall
 - Jamie Blauvelt
 - Pat Innamarato, Ph.D. (past)
 - Krithika Kodumudi, Ph.D. (past)
- Sarcoma Department
 - Odion Binitie, M.D.
 - Damon Reed, M.D.
 - Mihaela Druta, M.D.
 - David Joyce, M.D.
 - Andrew Brohl, M.D.
 - Rachel Voss, M.D.

- Moffitt Leadership
 - Doug Letson, Eric Haura, John Cleveland, Jose Conejo-Garcia, Ken Wright, Jon Zager, Christie Pratt, Brenda Connolly
- Moffitt Shared Resources (Core Facilities)
 - Flow Cytometry Core (Jodi Kroeger)
 - Cell Therapy Facility (Karampudi, Cox, Landin, Kelley)
 - Molecular Genomics Core (Yoder)
 - BBSR (Cen, Shaw, Teer)
 - Tissue Core (Francis, Fournier)
- Clinical Trials Office
 - Brandi Travis, Brook Olmo, Soha Riad, Riad George
- ICE-T Program
- Collaborators
 - Ben Creelan, Eric Toloza, Jonathan Metts (All Childrens),
 Ajay Gupta (Roswell Park), Dean Lee (Nationwide Childrens),
 Seth Pollack (Northwestern)
- The Patients
- Funding Sources
 - NCI K08CA252642
 - National Pediatric Cancer Foundation/Sunshine Project
 - Chotiner Family Foundation
 - Inderdisciplinary Mathematical Oncology Workshop Grant
 - Ocala Royal Dames Foundation
 - Iovance Biotherapeutics

John E Mullinax, MD, FACS
Assistant Member, Sarcoma Department
Surgical Director, Cellular Therapy Program
Moffitt Cancer Center

November 16, 2022